Reduced Modular Representations Applied to Simulate
Some Genetic Regulatory Circuits**

GHEORGHE MARIA*
University Politehnica of Bucharest,, Laboratory of Chemical & Biochemical Reaction Engineering, 1 Polizu, 011061 ,
Bucharest, Romania

General chemical engineering modelling principles are valuable tools to represent the topology and the
kinetics of complex cell processes. Elaboration of reduced models is based on a large amount of qualitative-
quantitative information ‘translated’ from the ‘language’ of molecular biology to that of mechanistic chemistry.
In the ‘reverse engineering’ approach, linked modules of adjustable complexity are used to simulate the
genetic expression regulatory networks by adequately lumping of species or metabolic reactions exhibiting
similar functions. The resulted model must keep a satisfactory predictability on key-species and steps, an
adequate representation of species inter-connectivity, structural, functional, and temporal cell hierarchy,
and of the multi-cascade control loops of adjustable intermediate levels. Application of (non-) conventional
identification and lumping methods can lead to a satisfactory prediction of local and global properties of the
protein synthesis regulatory network. Examples on modelling the genetic expression illustrate the advantages
but also the over-simplifications introduced by various reduced modular representations. Potential
applications of the lumped simulation in ‘genetic circuit engineering’ reveal the advantages of using modular
constructions for ‘in-silico’ design of new organisms that possess desired specific functions (e.g. biosensor

design).
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Living cells are organized, self-replicating, self-
adjustable, evolvable and responsive structures to
environmental stimuli, able to convert ‘raw materials’
(nutrients) from environment into additional copies of
themselves. Due to the highly complex and partly
unknown aspects of the metabolic processes, the
detailed mathematical modelling at a molecular level
remains still an unsettled issue, even if remarkable
progresses and developments of extended cell
simulation platforms have been reported, by using large
amounts of information and data [1].

Reliable and sufficiently accurate mechanistic kinetic
models are very effective tools in understanding a
chemical/biological process, its influential variables, and
physical meaning of parameters. However, complex
kinetic modelling requires costly investigations under a
wide range of operating conditions and inputs, by using
observed variables sampled at various scales. Finally,
the model degree of complexity depends on the adopted
hypotheses/assumptions, amount of available
information and utilisation scope. Classical modelling
rules use standard kinetic data (species concentrations
vs. reaction time) and a succession of conventional
identification steps derived from the statistical
estimation theory and from the physico-chemical-
biological modelling principles [2]. The estimation rule
is linked with the statistical methods because the
observed data are always subjected to experimental
errors, and multiple constraints are usually imposed to
the kinetic parameters.

Modelling very complex (bio)chemical systems, such
as metabolic processes at a molecular level, becomes
an extremely difficult task because the systems present
a low observability vs. the large number of species,
reactions, and transport parameters (many of them

poorly understood). However, advances in —omics
information lead to a continuous expansion of
bioinformatic databases, while advanced numerical
techniques, mixtures of conventional and non-
conventional estimation procedures, accounting for
qualitative/quantitative information and global
properties of the system, and massive software
platforms organized on a modular basis, reported
progresses in formulating reliable mechanistic cell
models [1].

When modelling complex cell metabolic
mechanisms, two main approaches have been
developed over decades [1,5,13]:

- the structure-oriented analysis (mainly known as the
‘metabolic control analysis” MCA) is focused on
characterizing the pathway topology and the stationary
cell growth. MCA uses various types of sensitivity
coefficients (the so-called ‘response coefficients’),
which are quantitative measures of how much a
perturbation affects the cell-system states (e.g. reaction
rates, mass fluxes, component concentrations) around
the steady-state. The systemic response of fluxes or
concentrations to perturbation parameters (i.e. the
‘control coefficients’), or of reaction rates to
perturbations (i.e. the ‘elasticity coefficients’) have to
fulfil the ‘summation theorems’, which reflect the
network structural properties, and the ‘connectivity
theorems’ related to the properties of single enzymes
vs. the system behaviour.

-the dynamic or kinetic models based on a hypothetical
reaction mechanism, kinetic equations, and known
stoichiometry. When the analysis is expanded to large-
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scale metabolic networks, lumped representations of
species and reactions are usually used due to the difficulty
to obtain consistent experimental kinetic information and
complete mechanistic details. Valuable structured dynamic
models have been developed for simulating various cell
(sub)systems, such as: ‘whole-cell’ models; single cell
growth; oscillatory metabolic paths; regulatory networks
for gene expression; cell cycles and oscillatory metabolic
processes; cellular communications, intracellular
signalling, neuronal transmission, networks of nerve cells
etc.

Each theory presents strengths and shortcomings in
providing an integrated predictive description of the
cellular regulatory network. However, a precondition for
areliable modelling is the correct identification of both
topological and kinetic properties of the system. In
solving the modelling problem, lumped (grouped)
representations of cell metabolic subsystems are used,
such as the functional subunits called ‘modules’ (e.g.
amino acid or protein synthesis regulation module,
protein degradation module, mitochondria metabolic
path, etc. [16]). As few kinetic data are present in a
standard form, the current trend in developing dynamic
models is to use the so-called unconventional
identification algorithms [12]. Such an approach
accounts for various types of information on cell sub-
system properties and functions, mixtures of estimation
methods, and advanced lumping algorithms to increase
the (reduced) model statistical quality. Structured
models of a modular construction, ‘circuit-like’ network,
or compartmented, including Boolean, continuous or
stochastic variables, are currently used to represent
various cell processes [1,2].

To overcome the structural low kinetics identifiability
of complex (bio)chemical systems, the model
reductions by lumping reactions and/or variables, and
by keeping the most influential terms in the kinetic and
transport relationships, are currently used. Estimate
quality tests, parameter sensitivity analysis, principal
component, ridge parameter selection, or elaborated
algorithms to find invariant subspaces of the extended
kinetic model are common rules to reduce an extended
model structure [4]. Combined statistical and non-
conventional estimators are used, by exploiting the
system global properties, such as regulatory
effectiveness, process periodicity, flexibility, certain
succession of events, etc. The model reduction cost is
a loss of information on certain species and reactions,
a certain loss in model generality, prediction capabilities,
and physical meaning for some rate constants [2-4]).

The use of advanced model reduction algorithms and
strategies in modelling (bio)chemical kinetic systems
present an important number of advantages, such as:

-increase in the statistical quality of the kinetic model
(identifiability, estimability) vs. available data, and an
increase in the computing tractability of the complex
biosystem.

- establishment of linking relations between extended
(low-estimable) kinetic model structures and reduced
(estimable, apparent) model structures, allowing an
useful interpretation of rate/equilibrium constants of
extended models from using reduced model parameters
identified from few observations.

- establishment of computationally tractable
alternatives to represent complex bio-molecular
processes, such as cell regulatory networks, synthesis
networks, metabolic cycles etc.
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The modular approach in developing structured
dynamic models is very attractive due to important
offered advantages. Thus, in the so-called ‘reverse
engineering’ and ‘integrative understanding’ analysis the
cell system is disassembled as much as possible,
performing tests, and learning the structure of the whole
and its parts with the hope of being able to ‘recreate’
the same system from scratch [6, 17]. Linked modules
of adjustable complexity are used to simulate the
genetic expression regulatory networks by adequately
lumping of species or metabolic reactions exhibiting
similar functions. The resulted model must keep a
satisfactory predictability on key-species and steps, an
adequate representation of species inter-connectivity,
structural, functional, and temporal cell hierarchy, and
of the multi-cascade control loops of adjustable
intermediate levels. Application of unconventional
identification and lumping methods can lead to a
satisfactory prediction of local and global properties of
the cell regulatory network. Potential applications of the
lumped simulation in ‘genetic circuit engineering’ reveal
the advantages of using modular constructions for ‘in-
silico’ design of new organisms that possess desired
specific functions (e.g. biosensor design [5]).

The scope of this paper is to illustrate, with some
examples, how elaboration of reduced kinetic models
of satisfactory quality to represent GRC (genetic
regulatory circuits) is closely related to the ability of
selecting the suitable lumping rules (of species and/or
reactions), key-parameters, influential terms, and to
apply unconventional identification strategies and
linking rules that better realize a trade-off between
model simplicity and its predictive quality.

Lumped GRN models

The gene expression is a highly regulated process, auto-
and mutually catalysed by means of synthesized activation
and repressor proteins (transcription factors) implied in
negative/positive feedback regulatory loops [18]. The
process regulation is realized by means of a hierarchical
organized genetic regulatory network (GRN). The modular
modelling approach implies the use of a gradual lumping
analysis of the GRN for simulating the mechanism by which
genes and proteins interact to regulate the gene expression.
Thus, various semi-autonomous lumped kinetic modules
can be constructed, based on experimental observations.
The negative regulatory loops and a cascade control of
the gene transcription and translation steps speed-up the
response time of the GRC to perturbations and make it
more sensitive and effective [13,18]. As an example, in Fig.
1 are presented various modular lumped models
describing the expression of a single gene [19], a bistable
switch circuit of two gene expression modules [5], or a
three module cross-regulated GRC from E. coli (i.e. the
repressilator of Ellowitz & Leibler [20]). As an application,
the bistable GRC switch of two gene expression modules
can be used to design mutant cells functioning as
biosensors.

Under such a representation, individual modules are
separately investigated in terms of structure and regulatory
efficiency, and then linked in regulatory chains accordingly
to certain rules that ensure the overall network efficiency
in conditions that mimic the stationary and perturbed cell
growth, system homeostasis, variable volume and isotonic
osmolarity. The emergent field of such efforts is the so-
called ‘gene circuit engineering’ and a large number of
examples have been reported with in-silico creation of
novel GRC conferring new properties/functions to the
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mutant cells (i.e. desired ‘motifs’ in response to external
stimuli), such as: toggle-switches, hysteretic GRC, GRC
oscillator, GRC signalling etc. [5,21,22]. A new research
topics, called Synthetic Biology, interpreted as the
engineering-driven building of complex biological entities,
aims at applying engineering principles of systems design
to biology with the idea to produce predictable and robust
systems with novel functions in a broad area of
applications, such as therapy of diseases (gene therapy),
design of new biotechnological processes, new devices
based on cell-cell communicators, biosensors etc. [23].

Such a lumping strategy presents several advantages
but also limitations. Dynamic models (Boolean,
continuous, or stochastic), of adjustable size, are used
‘to divide’ the complex gene circuits in sub-systems
(modules) of a more tractable complexity. By
representing the transcriptional mechanism and gene
interactions, the architecture of the cell regulatory
network is thus related to the physiological
characteristics of the organism [6,7]. Semi-autonomous
lumped modules are elaborated for representing various
regulatory units used in protein synthesis, and then
linked to efficiently cope with cell perturbations, and to
ensure an equilibrated growth during the cell cycle, with
an optimised resource consumption (substrate,
metabolic energy). Beside, the gene expression multi-
cascade control presents a monotonous response that
implies an intrinsic system modularity. This approach
allows reducing the analysis complexity by investigating
individual modules, and then to relate them to the
holistic cell properties.

The difficulty to precise the very large number of
parameters in complex GRNs lead to include lumped
unstructured representations of rate expressions of
power-law [8,9] or hyperbolic type [10] explicitly
accounting for the activator / repressors influence on
the individual operon activity. Even if resulted fractional
orders of reactions produce a biased representation of
the real process, promising practical implementations
are reported, being able to simulate cell system multi-
stability, bifurcations, oscillatory behaviour, and
hysteresis [7,9]. Various criteria to define the modular
system functional effectiveness have been defined (in
terms of stability, responsiveness, selectivity, robustness,
efficiency [11,15]) while multi-objective criteria allow
identification and optimization of GRNs (in terms of
gene connectivity, stability, redundancy, robustness/low
sensitivity vs. external noise and high regulatory
performance / response rate and overshoot [1,5].
Alternative lumped modular GRN structures are
discriminated based on the system constraints,
experimental observation, physical meaning of lumped
components and reactions.

Importance of individual fast equilibriums and
intermediates has to be separately checked, and
approximate lumping in system variables has to be based
on slow sub-spaces presenting an acceptable loss of
information about the system dynamics. However, some
intermediate species, of quickly adjustable low-
concentrations, cannot be eliminated by simple QSSA
(quasi-steady-state assumption) applied to lumped model
of adjustable complexity, their optimal levels resulting from
dynamic and stationary optimal regulatory characteristics,
synthesis path efficiency, and some global properties of
the metabolic system. Model reduction by including in
lumps the unknown or unidentifiable parts of the metabolic
mechanism, must preserve an acceptable predictability for
key-species homeostatic levels, functions, and cell
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systemic properties (structural, functional, and temporal
hierarchy)[12].

Example of constructing modular GRC models

In order to exemplify various rules for linking GRC
modules, the variable volume cell model [13] have been
adopted. Under this approach, the cell volume is
explicitly included in the mass-balance equations. The
kinetic expressions, evaluated at a certain time during
the cell growth, are linked through the osmaotic pressure
and the state-law (linking the cell volume, osmotic
pressure, temperature, and cell content in terms of
species number of moles). The main model hypotheses
are the followings (table 1): i) negligible inner-cell
gradients; ii) open cell system of uniform content; iii)
semi-permeable membrane, of negligible volume and
resistance to nutrient diffusion, following the cell
growing dynamics; iv) constant inner/external osmotic
pressure, ensuring the membrane integrity; v) average
logarithmic growing rate(D, = In(2) / t ;t_ = cell cycle
time); vi) volume growth of the apprOX|mate
exponential law (V =V exp (D t)); vii) homeostatic
stationary growth (dc /cﬁt) 0 (Where C. = species |
concentration); viii) perturbatlons in cell volume are
induced by variations in species copynumbers under the
isotonic osmolarity constraint.

Under such a representation, the individual or lumped
reaction rates and the internal/external perturbations
in species levels are explicitly linked with the evolution
of the cell volume and dilution factor, which in turn will
directly influence (by means the so-called ‘secondary
perturbations’) the cell component concentrations. The
result is a more accurate representation of the cell-
growth [1,13] and cell-division phases [24], and a more
realistic representation of the local and global regulatory
properties of the GRC. The rates of individual reactions
are constrained by the periodicity of the cell-cycle and
by the requirement that molar amounts of all
components and the volume must double in exactly one
cell-cycle [25]. To be consistent with the hypotheses,
such a ‘whole-cell’ modelling framework requires that
each cell process to be included at some level of detail,
i.e. as an individual or lumped species and/or reaction.
The model analysis allows the full characterization of
the GRC, by explicitly linking the model parameters to
the system properties and its effectiveness (PI.). Among
module Pl.-s are to be mentioned the followings [5]:

-system local stability condition, and stability strength:
i)stationary regulation, i.e. large margins of stability in
the state variable space vs. stationary perturbations; ii)
dynamic regulation, i.e. fast T . = species j recovering
time of the steady-state (QSS) “With a tolerance of 5%
[11] or 1% [1], after an impulse-like perturbation;

-high responsiveness to (exo/endogeneous) signalling
species of repression or de-repression, that is small rise-
times (transition times r) and tolerable overshoots in
the level of enzymes repressmg or de-repressing the
gene expression;

-GRC selectivity, the regulator protein being
sufficiently insensitive to changes in the level of effector

protein [i.e. small sensitivities S(cricrz) =
=dln(cg;)/dln(cg, )] (fig.1), or to other species from the

-GRC robustness, that is small sensitivities of the
system performances vs. its kinetic parameters [i.e.

small sensitivities Scc; ;k)=0dIn(c,,)/dln(k), OF
S(T,ec,j;k)=6ln(rrec,j)/6ln(k)]
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Fig. 1. Example of lumped representations of simple GRC (1-3 regulatory modules).
(Up) One gene expression regulatory module with induction and repression loops [19].
(Middle) The bistable switch circuit of two gene expression regulatory modules, oftype G1(R2R2)n(R1)m + G2(R1R1)n(R2)m, [5,13].
(Down) Three module GRC circuit, i.e. the repressilator from E. coli [20]. Notations: I,

= inducer; AA= aminoacids; P= promoter or protein, G= gene; O= operators; R=

-system regulatory efficiency in terms of ensuring an
appropriate steady-state stability in response to dynamic
perturbations in internal or external species [i.e. small
QSS-sensitivities S(cJ er Ik

-species connect|V|ty interms of synchronized and
efficient treatment of a dynamic perturbation for
recovering the steady-state [i.e. small STD= standard
deviationof T __];

In this paper. the checked regulatory Pl.-s are the
followings: the species j sensitivity vs. stationary
environmental perturbations in nutrient levels S(c

Cy-); the QSS-recovering times of species T . after'a
dynamic inner perturbation; AVG= average of T, "
STD= standard deviation of species T afteradynamlc
inner perturbation, AVG= average of T _; STD=
standard deviation of T

For exemplification, fi& E. coli cell with the nominal
(index ‘s’) growmg conditions[13] has been

approached: .V =1.66.10"L;t=100 min;c . =
3 . 1068 nmoI LE Nt —ZcMetPJs =3.108 nmofi_'l'
Cors= = 10° nmol L1 Cops = 102 nmol Lt

Cuae Copre Coppye e Cen 8T8 172 or T4 niol "
pip1e Coopas inférmediatés of adjustable levels that
maximize the P.l.-s of GRC (Notations ‘cyt'=
cytoplasma; G= gene; P= protein; ‘0’= initial; M=
MRNA; NutP, NutG = nutrients; MetP, MetG=
metabolites; GP, GPP, MP = catalytically inactive
species).

Several linking rules have been establish and
checked. Among them, are to be mentioned the
followings: linking reactions between modules must be
set slower comparatively to the module core reactions;
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repressor

use cooperative and mutual catalysis; individualized
functions must be allocated to each component into the
cell; intermediate species levels and allosteric
regulation loops must be adjusted accordingly to the
GRN size; variable cell-volume and isotonic modelling
environment must be considered for a more realistic
representation of the secondary connectivity effects
(cell *ballast’ and ‘inertia’). One important rule is to try
to use effectors in dimmer form (e.g. PP instead P) to
adjust the gene activity (fig. 2). The transcriptional
control with multiple operators binding repressor dimers
Gi(PjPj)n is highly effective, the quickly adjustable dimer
kp;,
levels [PjPj], via fast 2j+Fj <_~’ PjPj reactions will

kdiss

confer more flexibility to the gene expression regulatory
module in ranging the stability, the dynamic
characteristics, and the GRC flexibility vs. environmental
changes. For instance, the cooperative link of two
modules [G1(P1)2 + G2(P2)2], compared to the link
[G1(P1P1)1 + G2(P2P2)1] in figure 2 proves that, in spite
of two buffering reactions in the G(P)2 unit, the use of
PP dimmers in one buffering reaction unit G(PP)1 leads
to better dynamic-Pl., i.e. lower 1., AVG(T ) and
STD(t,, ) The stationary S(c Nutl5) are praciically
unchanged while the module compIeX|ty is comparable
(n, =12 species and n = 8 reactions for both systems).
The low-concentrations of the oligomeric effectors (of
type PP, PPPP, ...) are determined not by a QSSA but
from optimising the global properties of the overall
modular regulatory chain.

When the GRN is extended, by keeping the same
gene-expression module type, the whole network Pl.-s
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Fig. 2. Example of two linked GRC modules: multiple dimmer effectors (of optimized level) increase the system flexibility. (Up) The

G1(P1), + G2(P2), system compared to the G1(P1P1), + G2(P2P2), system. (Down left) Species recovering times Trec,j

to steady

state after a £10%[P1], impulse perturbation; (Down right) Sensitivities vs. nutrients S(cj;NutP) of the species stationary levels [13].
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Fig. 3. Example of two linked GRC modules: cope with complexity and response synchronization by using a cascade control of gene
expression. (Up) The G1(P1), + G2(P2), system compared to the G1(P1) ;M1(P1), + G2(P2),;M2(P2), system. (Down left) Species
recovering times Trec,j to steady state after a =10%[P1]_impulse perturbation; (Down right) Sensitivities vs. nutrients S(cJ.;NutP) of
the species stationary levels [13].

tend to decline due to an increased complexity of the
system (n number), and an increased difficulty to
synchronlze the efficient response of all components
vs. perturbations. Due to such reasons, as the GRC is
extended, as more effective modular representations
(with cascade control and multiple effectors) should be
used. For instance, in figure 3 a two-module GRC is
modelled in the variant of a simpler G1(P1), + G2(P2),

32

representation (n =10 species) comparatively to the
G1(P1),;M1(P1), + G2(P2),;M2(P2), system (n =14
species§ In splte of an increased compIeX|ty, the use of
a more effective regulatory schema leads to adequate
regulatory Pl.-s. Indeed, by comparing the two assembly
alternatives in figure 3, T_ . is lower for all species
(except for P1), the species interconnectivity index
STD(TJ) is better (i.e. alow value), while QSS-resistance
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Table 1
VARIABLE CELL-VOLUME DYNAMIC MODEL AND ITS BASIC HYPOTHESES [1]

Mass balance and state equations Remarks
dcj ] de continuous variable dynamic model
= = A Dc;=gi(ck) representing the cell growing phase
| N (ca. 80% of the cell cycle)
J .
——==ri(ck); j=1..n
v dt j( )i J s
RT _ v 1 _ constant osmotic pressure constraint
T B constant (Pfeffer’s law in diluted solutions)
2N; Yc¢i X
Jj 0
j=r o gEt e
[all all isotonic osmolarity constraint
Y| =[xe¢;
=] -~ J
J cyt J env
Hypotheses:

following the cell growing dynamics;

- negligible inner-cell gradients; open cell system of uniform content;
- semi-permeable membrane, of negligible volume and resistance to nutrient diffusion,

- constant osmotic pressure, ensuring the membrane integrity (7 eyy= Zopy= constant);

- nutrient and overall environment concentration remain unchanged over a cell cycle;
- logarithmic stationary growing rate of average D = (dV/di)/V), = In(2)/t

- homeostatic stationary growth of (dcj /dt)s =g; (cg.k)=0;

- perturbations in cell volume are induced by variations in species copynumbers under the
isotonic osmolarity constraint: ¥peyp /V = (ZN

)

J ) perturb / (Z Nj ) )

Notations: ¢;= species j concentration; rp= species j reaction rate; Nj= species j no. of

moles; V = cell volume; T = temperature; R= universal gas constant; /= time; index ‘o’=
initial; & = rate constant vector; t. = cell cycle period

to external perturbations are practically unchanged (i.e.
the S(cj; NutP) sensitivities).

Conclusions

Modelling synthetic gene circuits for in-silico GRC-
design is an important step in advancing the
understanding on the regulatory cell network, with
important theoretical and practical implications. The
modular approach, with accounting for both local and
holistic GRC properties and observations from bio-
molecular databanks, makes this computational
approach effective allowing: similarity analysis of
models (structure vs. predictions); lumping analysis;
system characterization (QSS-multiplicity, stability,
flexibility, robustness, efficiency); system modularisation
and development of cell simulation platforms.

Even if ageneric GRC from E. coli has been analysed,
the variable-volume and whole-cell modelling
framework, with explicitly considering the link between
the volume-growth and the reaction rates for all species
into the cell, appears to be a more promising approach
to evaluate the GRC characteristics in a cell, by
mimicking the equilibrated or perturbed growth. Such
models can avoid over-estimation of some regulatory
properties (i.e. responsiveness, efficiency, connectivity),
accounting for the role of cell-ballast in smoothing
internal/external perturbations, for direct or indirect
perturbations of species levels (transmitted via chain
reactions and cell-volume variation).

Lumping rules are proved to be effective tools for
modelling the cell regulatory process complexity and
dynamics, coping with the cell-system low observability,
identifiability and estimability. Power-law or Hill-type
representation of modular GRC, including apparent rate
constants, can reproduce a wide-range of cell functions
and dynamic behaviour. However, the model
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predictability is strongly dependent on the lumping
degree, on the key-species selection and ability to
realise the suitable trade-off between model simplicity,
its predictive power and physical-meaning of terms. A
sensitivity analysis applied to model terms can help in
relating the GRC holistic properties to the individual
regulatory module structure.

Derivation of relations between apparent and
extended model structures is of high interest for a
process correct interpretation, and to characterise the
relative importance of various reaction steps. The
apparent steps tend to compensate the loss in system
diversity introduced by the lumping rule, and cannot
fully describe the real interactions among reaction
intermediates. Because the apparent parameters
(identified from experimental data) present values
smaller or larger than those corresponding to
elementary steps, the physical meaning of lumps can
also play an important role in choosing the most suitable
lumping route from the large number offered by the
theoretical analysis.

When large cell dynamic models are developed,
application of unconventional model reduction strategies
are recommended, by combining suitable system
modularisation (in functional sub-units) with application
of the sensitivity analysis to relate metabolic network
holistic properties (hierarchic organization and regulatory
efficiency) to the individual module properties.
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